JENGA_9

© Ediciones Milenio - Jenga 9 4 En esta sección activarás tus conocimientos previos mediante la realización de actividades, juegos, procedimientos y manualidades. Cada unidad empieza con un juego en el que pondrás a prueba tus habilidades matemáticas. Los contenidos de cada componente se desarrollan con ejemplos y problemas de aplicación que posibilitan una mejor comprensión del conocimiento nuevo. Encontrarás que la exposición del tema nuevo se hace mediante la utilización de ejemplos y cuadros de síntesis. Cada tema termina con una serie de ejercicios y actividades relacionados con los procesos generales del área: modelación, comunicación matemática, razonamiento, ejercitación de procedimientos y formulación y resolución de problemas. Pensamiento numérico y variacional Pensamiento espacial y métrico Pensamiento aleatorio © Ediciones Milenio - Jenga 6 61 1 2 3 4 5 ¡A encontrar regularidades! Sea la secuencia de números Cn, siendo Cn = Tn + Tn + 1 Por ejemplo, C1 = T1 + T2 ⇒ C1 = 1 + 3 ⇒ C1 = 4 4. Forma la secuencia de los cinco primeros números Cn. Toma como primer número de la secuencia el 1, es decir: C1 = 1. C2 = 1 + 3 ⇒ C2 = 4 C3 = 3 + 6 ⇒ C3 = 9 C4 = 6 + 10 ⇒ C4 = 16 C5 = 10 + 15 ⇒ C5 = 25 C6 = 15 + 21 ⇒ C6 = 36 5. Observa la representación de los cinco primeros números de la secuencia Cn. 6. ¿Qué características tiene la representación de los números de la secuencia Cn? Escribe las características de las figuras. 7. Completa la tabla a partir de la representación de cada número de la secuencia, en cuanto al área de los cuadrados. C1 C2 C3 C4 C5 12 22 8. Escribe una fórmula para encontrar el número Cn. Pensamiento numérico Múltiplos de un número natural Divisores de un número natural Criterios de divisibilidad Descomposición en factores primos El máximo común divisor Métodos para hallar el máximo común divisor El mínimo común mútliplo Triángulos Unidades agrarias de área Patrones numéricos y patrones geométricos Magnitudes correlacionadas Distribución de frecuencias Cuadriláteros Clasificiación de cuadriláteros Unidades de medida de masa Gráficos estadísticos Los CDT 92 90 88 72 68 66 64 76 74 100 80 82 97 96 94 102 106 Pág. económica y FINANCIERA Educación Pensamiento geométrico Pensamiento aleatorio Pensamiento variacional Pensamiento métrico © Ediciones Milenio - Jenga 6 60 Los números triangulares Los números triangulares son aquellos que pueden representarse mediante un arreglo triangular de puntos, conformando un triángulo equilátero. Los primeros son 1 (por convención), 3, 6, 10, 15 ,21, 28, 36. Se puede ver que un número triangular es igual a la suma de números enteros consecutivos. Así, el quinto número triangular es 15 porque 1 + 2 + 3 + 4 + 5 = 15. Observa los cinco primeros números triangulares. 3. Escribo la secuencia de los diez primeros números triangulares. T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 2. ¿Cómo me represento? Voy formando un triángulo, cuya base es igual a 9 puntos. 1. ¿Qué número soy? Soy el noveno número triangular. T1 = 1 T2 = 3 T3 = 6 T4 = 10 T5 = 15 1 1 + 2 1 + 2 + 3 1 + 2 + 3 + 4 1 + 2 + 3 + 4 + 5 Juego de inicio Aprendizajes

RkJQdWJsaXNoZXIy