JENGA_2

© Ediciones Milenio- Jenga 1 203 1. 2. 1. 2. Reflexión 4 Diego quiere ahorrar. ¿Cuál de las siguientes estrategias podría utilizar para conseguir recursos? a) Ayudar a hacer la publicidad para que su mamá venda más jabones. b) Hacer sus tareas escolares. c) Cobrar cada vez que quiere salir a jugar. d) Salir a pasear y no ayudar a su mamá. 5 Cada uno de los niños recibe diariamente $5.000. Si gasta lo que muestra la etiqueta, ¿cuánto podrá ahorrar en ese día? 6 Reflexiona y propón estrategias para obtener ingresos y ahorrar. 7 Analízate y describe dos oficios o servicios que te gustan y sabes hacer muy bien, y con los que podrías ayudar a tu familia a conseguir recursos y a ahorrar. Emparedado .......$1.500 Jugo .......................$800 Chicles....................$500 Colombinas ...........$ 800 Paquete de fritos .$1.800 Jugo ......................$ 900 Maquinitas ........... $1.200 Puede ahorrar Puede ahorrar PEGA $800 $600 $2.500 $1.300 $3.500 105 Problemas similares En cada caja hay 48 huevos. ¿Cuántos huevos habrá en 9 cajas? El álbum de colección de laminillas de animales tiene 96 hojas. Si en cada hoja hay espacios para 8 laminillas, ¿cuántas laminillas cabrán en el álbum? Los libros con figuras de animales para colorear valen $2.600 cada uno. Si Javier quiere comprar 3, ¿cuánto debe pagar? Daniela ahorra $1.500 diarios. ¿Cuánto dinero ahorrará en la semana? Formula y resuelve problemas Con la siguiente información, plantea un problema que se resuelva mediante la multiplicación. 109 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 30 31 40 41 50 51 60 61 70 71 80 81 90 91 100 Habitación 1 Estudio Sala Patio Baño 1 Baño 2 Cocina Habitación 2 Habitación 3 8. Es un múltiplo de 9: a. 14 (35) b. 28 (82) c. 70 (37) d. 72 (28) 9. Es un múltiplo de 3: a. 4 (54) b. 11 (2) c. 7 (9) d. 15 (6) 10. Observa el plano y responde: ¿cuántas unidades cuadradas tiene el baño 1? ( ). 11. Calcula: 6 x 3 + 4 = ( ). 12. Calcula: 2 x 7 x 3 + 10 – 1 = ( ). 13. Halla el número: 100 – ( ) = 58 14. Halla el número: ( ) + 40 = 93 15. 9 x 5 – 1 es igual a ( ). 16. 8 x 6 + 7 es igual a ( ). Es el principal objetivo de la enseñanza de las matemáticas. Se presenta el modelo desarrollado del proceso propuesto por el matemático Poylla para la resolución de problemas: comprensión del enunciado, planeación de una estrategia, resolución de operaciones y verificación del resultado. Los procesos y contenidos trabajados durante la unidad se evalúan en un formato de evaluación sumativa que busca resultados que representarás en un diverplano o plano cartesiano. Aquí verificas el dominio conceptual del tema y la habilidad en la resolución de procedimientos y te diviertes encontrando la figura propuesta en el plano. La educación financiera abarca diferentes aspectos de la vida y si es enseñada desde temprana edad, preparará a los más pequeños para tomar mejores decisiones en el futuro. Cada unidad cuenta con un apartado dedicado a este tema. Cada sección de trabajo está identificada con un ícono que representa la competencia a desarrollar. 108 Selecciona la respuesta correcta o soluciona la operación. Ubica la respuesta del paréntesis en el plano. Une los puntos siguiendo el orden de las preguntas. Colorea la figura que resulta. 1. Tengo: 4cM, 2dM, 8uM, 3cM, 4dM, 1uM, 9c, 7d, 0u. Esto equivale a: a. 483.297.120 (80) b. 438.281.970 (98) c. 423.847.940 (56) d. 428.341.970 (94) 2. Observa la serie y escoge la figura que sigue. a. (78) b. (85) c (62) d. (50) 3. En un rectángulo que mide 80 cm de largo por 60 cm de ancho, el perímetro es: a. 380 cm (25) b. 240 cm (42) c. 360 cm (25) d. 280 cm (55) 4. 160 en números romanos se escribe: a. LLLX (67) b. IVI (55) c. CLX (46) d. LXC (24) 5. El número romano MCCC corresponde a: a. 53 (99) b. 3.000 (66) c. 1.100 (89) d. 1.300 (57) 6. Un triángulo es equilátero cuando: a. Dos de sus lados tienen la misma medida. (57) b. Sus tres lados tienen la misma medida. (48) c. Los tres lados tienen diferente medida. (57) d. Dos de sus lados tienen diferente medida. (57) 7. Es un múltiplo de 7: a. 56 (59) b. 16 (97) c. 36 (65) d. 47 (78) 104 En una canasta caben 25 botellas de gaseosa. ¿Cuántas botellas de gaseosa caben en 8 canastas? Comprende ¿Cuántas botellas caben en una canasta? Caben 25 botellas. ¿Qué se empaca en las botellas? Gaseosa. ¿Qué pregunta el problema? Cuántas botellas de gaseosa caben en 8 canastas. Planea Dibuja las canastas y plantea la multiplicación que resuelve. Es decir, 25 x 8 25 8 200 x Resuelve Realiza la operación. Verifica 25 + 25 + 25 + 25 + 25 + 25 + 25 + 25 = 200 Respuesta: En 8 canastas caben 200 botellas de gaseosa. FINANCIERA Educación 202 Para poder ahorrar dinero las personas debemos obtener ingresos y de ellos decidir cuánto se va a ahorrar. Las personas adultas trabajan y reciben un salario y de allí hacen un ahorro. Otras personas tienen ocupaciones comerciales y reciben ganancias y guardan parte de estas para hacer su ahorro. Para ahorrar es necesario saber cuánto se necesita gastar de lo que se recibe y luego sí establecer cuánto queda para ahorrar. 1 Don Mario trabaja en una fábrica y recibe $756.000. Si él gasta mensualmente $540.000, ¿cuál de las siguientes operaciones se debe efectuar para saber cuánto le queda para ahorrar? a) 750.000 + 540.000 b) 750.000 – 540.000 c) 756.000 + 540.000 d) 756.000 – 540.000 2 Haciendo la cuenta respectiva, se puede afirmar que don Mario puede ahorrar: a) Menos de $500.000 b) Más de $1.000.000 c) Hasta $216.000 d) Hasta $326.000 3 La mamá de Diego tiene una pequeña industria de jabones perfumados. Si por cada jabón gana $500, la ganancia que obtiene al vender 100 jabones es de: a) $500 b) $5.000 ¿Cómo y cuánto se puede ahorrar? c) $50.000 d) $500.000 FINANCIERA Educación PRACTICA APLICA COMUNICA RESUELVE PROBLEMAS 5

RkJQdWJsaXNoZXIy